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Abstract. We calculated the Shannon entropy of position and momentum for the stationary
quantum states of the harmonic oscillator as a function of its energy and determined
the corresponding entropic uncertainty relations for them. We found an approximate
phenomenological function for the dependence of position and momentum entropies on the
large quantum numbers and the corresponding asymptotic entropy–energy relation for the
stationary harmonic oscillator. We also studied the time evolution of the position and momentum
entropies of the non-stationary harmonic oscillator for the coherent states, squeezed vacuum and
Schr̈odinger cat states.

1. Introduction

There has been considerable recent interest in the information-theoretic (or entropic)
uncertainty relations (EUR) which represents an alternative formulation of the Heisenberg
uncertainty principle (UP). In the information-theoretical formulation ofUP, for expressing
the uncertainty of an observable one uses the Shannon entropy of its probability distribution
instead of its variance (see e.g. [1, 2, 20] and references therein).EUR represents the sum
of entropies of two observables and is constructed as follows: consider a normalized state
vector |ψ〉 in anN -dimensional Hilbert space and let the observablesA andB have non-
degenerate spectra of eigenvectors|ai〉 and |bj 〉, respectively. The entropic uncertainty
relation is an inequality of the form

S(A) + S(B) > SAB (1)

where

S(A) = −
∑
i

|〈ψ |ai〉|2 ln |〈ψ |ai〉|2

S(B) = −
∑
j

|〈ψ |bj 〉|2 ln |〈ψ |bj 〉|2
(2)

andSAB is a positive constant which represents the lower bound of the right-hand side of the
inequality (1). For the continuous observablesXc andPc described by the wavefunctions
ψ(x) andϕ(p), the relation (1) reads

S(Xc + S(Pc) > SXP (3)

where

S(Xc) = −
∫ ∞

−∞
|ψ(q)|2 ln |ψ(q)|2 dq

S(Pc) = −
∫ ∞

−∞
|ϕ(p)|2 ln |ϕ(p)|2 dp

(4)
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represent the differential entropies ofXc and Pc. Bia lynicki-Birula and Mycielski [3],
Deutsch [4], Maassen and Uffink [5], Sánchez-Ruiz [6] and Bia lynicki-Birula [7] have
shown that non-trivial lower bounds forSAB or SXP exist for any two observables with no
common eigenstates and found their values. The majority of authors dealing with theEUR

have been trying to find the lower bound of the entropicUR, so, for example, Bia lynicki-
Birula and Mycielski [3] found that for the sum of entropies of position and momentum it
holds that

S(x) + S(p) > 1 + lnπ (5)

(hereh̄ =1). Recently, there has been considerable interest in finding the dependence ofS(x),
S(p) andS(xp) on the quantum states for whichS(xp) has larger values than its minimal one
[16–19]. The dependence ofS(x) andS(p) on the quantum state of the quantum harmonic
oscillator (QHO) is interesting for the following reasons:

(i) Since the entropy is a measure of the spatial ‘spreading out’ of the wavefunction, its
value for the various quantum states gives the picture of how the localization of the mass
point of aQHO depends on these states.

(ii) Due to the Jaynes relation between the information-theoretical and physical entropy
via Boltzmann’s constant,kB, one can ascribe to any quantum object a certain value of its
physical entropySphys = kBSinf [8].

(iii) The entropy–energy relation forQHO also plays an important role in the
determination of the fundamental physical limit of computation [9].

This paper addresses the question of what are the valuesS(x), S(p) and S(xp) in EUR

for the stationary and certain non-stationary states of a harmonic oscillator ifx andp are
its coordinate and momentum. Apart from being of interest in its own right, there is a
specific motivation for studying these issues. The principal one concerns the question of
the emergence of the classical behaviour of a quantum oscillator in the dependence of its
state and the question of time dependence ofEUR for some non-stationary states. In what
follows we calculate the Shannon entropy for the position and momentum for the states
of the QHO. We then consider the classical harmonic oscillator and calculate its position
entropy in dependence of its total energy. We compare both the position entropies and find
the asymptotic analytic formula for the dependence of the position entropy of a quantum
oscillator on its energy. We show that the values of the position entropy of theQHO approach
those of the corresponding entropy of the classical oscillator (CHO) as the quantum number
n increases. This points out that for high values ofn QHO can be treated classically, and also
its position entropy. Finally, we calculate the time evolution of the position and momentum
entropies for some non-stationary states ofQHO and show that the squeezed vacuum states
can get arbitrary values either for the position or momentum entropy, but their sum never
drops below the entropy of the vacuum state as stated by theEUR (5). The Schr̈odinger cat
states entropy oscillates between a maximum value when the Gaussian peaks are separated
and a minimum value when the peaks interfere; for high excitations the difference between
the minimum and the maximum entropies is just onenat (natural unit of information).

Let us recall the exact definition of the Shannon entropy as ameasure of the probability
uncertaintyof a stochastic variablẽx. Let x̃ be a random variable defined on a stochastic
object with the probability distribution functionP . The information-theoretical (or Shannon)
entropy of therandom variablex̃, S, is given by the general integral [10]

S(x̃) = −
∫

P (dx) logP (dx) . (6)

For a continuous random variablex̃c, the probability density function,p(x), is given as

p(x) = dP /dx (7)
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and the Shannon entropy has the form

S(x̃c) = −
∫
p(x) lnp(x) dx . (8)

2. Entropy of the stationary states ofQHO

2.1. EUR for a quantum harmonic oscillator

In this section we calculateS(x) andS(p) for the stationary states and compare the obtained
values to the lower bound (5) and also to the results given by the classical theory of
harmonic oscillators. In order to determineSx andSp for the quantum harmonic oscillator
we need its wavefunctions in a coordinate and momentum representation which are the
solutions of the corresponding Schrödinger equations for the harmonic oscillator. With the
dimensionless abbreviationε = E/(h̄ω) andξ = x/σx , whereσx = √

h̄/(mω), one obtains
the Schr̈odinger equation for theQHO in the coordinate representation in the form [11]

− d29

dξ2
+ ξ29 = 2ε9 . (9)

This equation has ann-solution9n = CnHn(ξ) exp(−ξ2/2) with the energiesεn = n+ 1
2,

(n = 0, 1, 2, . . .). HereCn = (
√
π2nn!)−1/2 andHn(ξ) are the Hermite polynomials ofnth

degree. The probability density for finding the mass point ofQHO in the coordinateξ is

ρn(ξ) = |9n|2 = C2
nH

2
n (ξ) exp(−ξ2) (10)

or, in terms of thex coordinate

ρn(x) = C2
n

σx
H 2
n (x/σx) exp(−x2/σ 2

x ) . (11)

Its position entropy is according to (8) given as

S(x)q (n) = −C2
n

∫ ∞

−∞
H 2
n (ξ) exp(−ξ2) ln

[
C2
n

σx
H 2
n (ξ) exp(−ξ2)

]
dξ

= −C2
n

∫ ∞

−∞
H 2
n (ξ) exp(−ξ2) ln

[
C2
nH

2
n (ξ) exp(−ξ2)

]
dξ + ln σx . (12)

Here the subscriptq refers to the entropy of theQHO, in contrast to the subscriptc with which
we will next denote the quantities referring to theCHO. Since the integrals (12) cannot be
generally evaluated analytically we determine them numerically, taking for the integration
boundaries the multiple of the area where the position probability density function is most
concentrated.

Since the wavefunction in the momentum representation is the Fourier transform of
coordinate wavefunction, which can be expressed in a similar form to be coordinate
wavefunction, we get for the momentum entropy the expression

S(p)q (n) = −C2
n

∫ ∞

−∞
H 2
n (ξ) exp(−ξ2) ln

[
C2
nH

2
n (ξ) exp(−ξ2)

]
dξ + ln σp (13)

whereσp = √
ωh̄m. The values of the integrals can also be determined numerically and are

equal to those of position entropies (up to a constant ln(σp/σx)). Summing both entropies
together we getEUR for the quantum states ofQHO as a function of quantum numbern

S(x)q (n)+ S(p)q (n) = −2C2
n

∫ ∞

−∞
H 2
n (ξ) exp(−ξ2) ln

[
C2
nH

2
n (ξ) exp(−ξ2)

]
dξ + ln h̄ . (14)
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Note that for the vacuum energy withn = 0, and the first excited staten = 1, the values
of quantum position and momentum entropies can be determined exactly yielding (see also
[18])

S(x)q (0) = S(p)q (0) = 1
2(1 + lnπ) (15)

and

S(x)q (1) = S(p)q (1) = 1
2 lnπ + ln 2 + γ − 1

2 (16)

where for the sake of simplicity we have putm = ω = h̄ = 1 andγ ≈ 0.5772 is the Euler
constant.

2.2. Position entropy for the classical harmonic oscillator

Suppose that we do not knowa priori the position of the mass point of a classical harmonic
oscillator and we have to determine the probability of finding it in a certain coordinate
element dξ . In order to compare the quantum and classical oscillator we suppose that the
classical oscillator takes only the energies of the quantum one. To find this probability we
have to determine the velocity by means of which we can find the time interval in which
the mass element ofCHO dwells in a certain coordinate element. For this purpose we use
the energy equation ofCHO in which we insert quantum energies [11]

ẋ2 + ω2x2 = h̄ω

m
(2n+ 1) . (17)

From equation (17) one gets for the amplitude of the classical oscillator

An =
√
h̄/(mω)

√
2n+ 1 n = 1, 2, . . . (18)

and for the velocity

ẋ = ω

√
A2
n − x2 . (19)

The time of occurrence dt in the coordinate element dx for the mass point ofCHO is given
as

dt = dx

ω
√
A2
n − x2

. (20)

Since the classical probability dP that the mass point occurs in the coordinate element dξ

is directly proportional to dt , we have

ρn(x) = 1

π
√
A2
n − x2

. (21)

Inserting of the probability density ofCHO we get for the position entropy ofCHO

S(x)c (n) = −
∫ An

−An
ρn(x) ln ρn(x) dx

= − 1

πAn

∫ An

−An

1√
1 − (x/An)2

[
ln

(
1

πAn

)
+ ln

(
1√

1 − (x/An)2

)]
dx . (22)

Using the substitutionζ = x/An we have

S(x)c (n) = 1
2 ln

2π2h̄

mω
+ C + 1

2 ln
(
n+ 1

2

)
(23)
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Figure 1. Dependence of the position entropy on the quantum numbern for the quantum
harmonic oscillator (dotted curve), classical oscillator (full curve) and the asymptotic dependence
(31) for the quantum oscillator (broken curve).

where

C = 1

2π

∫ 1

−1

ln(1 − ζ 2)√
1 − ζ 2

dζ . (24)

The integral (24) can be be calculated by making the change of variableζ = cosθ , which
leads to

C = 1

π

∫ π

0
ln(sin(θ)) dθ = − ln 2 . (25)

With C = − ln 2, equation (23) get the form

S(x)c (n) = 1

2
ln
π2h̄(n+ 1/2)

2mω
. (26)

We have calculated numerically the position entropy ofQHO as a function of its energy
for the quantum numbern ∈ [0, 50] and for n = 100, 150, 200, 250 and 300. (The
calculations were performed usingMathematica[12]). Numerical values of the entropies
are also given in [18, 19]. The calculated values of position entropy are plotted against the
quantum numbern in figure 1. We see thatS(x)q (n) represents a monotonically increasing
function of quantum numbern having minimal valueS(x)q (0). SinceS(x)q (n) is equal to
S
(p)
q (n) the sumS(x)q (n) + S

(p)
q (n) ≡ S

(x,p)
q (n) = 2S(x)(n). It is interesting to compare the

quantum position entropyS(x)q with the position entropy of a classical oscillator and find the
energy values for which both entropies approach each other. The functionS(x)q (n) ≡ F(n)

can be estimated by taking into account the form of the quantum probability densities of
QHO. The first estimate of this function can be made if one considers that for highn the
position density function consists of a series of peaks having their mean values given by
the density function of the classical oscillator. Thus the area where we can find the mass
point is approximately one half of the area of the classical oscillator. The information for
the position is therefore less by factor of ln 2 than the classical position entropy. A better
estimate can be made by also taking into account the shape of the peaks (i.e. not only is
the mass point in the peak—yes or no). Then we can write

ρq(x) ≈ 2 cos2(knx)ρc(x) (27)
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where kn is a high number, increasing withn. The form of the right-hand side of
equation (27) is a consequence of the asymptotical formula for Hermite polynomials [21].
Since cos(knx) changes quicker thanρc(x), the entropy can be written as

S(x)q ≈ −
∫
ρc(x)2 cos2(knx) ln[ρc(x)2 cos2(knx)] dx . (28)

Using the identity 2 cos2 t = 1 + cos(2t), we get

S(x)q ≈ −
∫
ρc(x) ln ρc(x) dx − ln 2 −

∫
ρc(x) ln ρc(x) cos(2knx) dx

− ln 2
∫
ρc(x) cos(2knx) dx − 2

∫
ρc(x) cos2(knx) ln[cos2(knx)] dx . (29)

Due to the fast oscillating behaviour of cos(2knx) which takes both signs, the third and fourth
terms of (29) are approximately zero. Therefore equation (29) differs from our first estimate
by the last integral, which is essentially the mean of the function cos2(knx) ln[cos2(knx)].
Since this function oscillates much faster thanρc(x) changes, we can approximate the last
integral in (29) by averaging this function over its period

− 2
∫
ρc(x) cos2(knx) ln[cos2(knx)] dx ≈ −2

1

π

∫ π

0
cos2 t ln(cos2 t) dt = 2 ln 2− 1 . (30)

Thus

S(x)q ≈ 1

2
ln

(π2h̄(2n+ 1)

mω

)
− 1 ≡ S(x)[approx]

q . (31)

Equation (31) has been previously derived in [17, 19] following a different approach that
makes no reference to the classical entropy. The values ofS(x)c , S(x)q and S(x)[approx]

q as
functions of quantum numbern are shown in figure 1. We can see that the values of
S(x)q (n) are for (n > 15) embedded between the values of position entropy ofCHO and the
values given by the approximate formula (31);S(x)q (n) approaches the approximate values
with increasingn. This points out that aQHO can be treated as aCHO when its quantum
number is sufficiently high. The relatively slow convergence to the approximate formula
(31) can be explained taking into account the behaviour of the probability densities near
the turning points (see figure 2, where−ρ(ξ) ln ρ(ξ) is depicted). The change ofρc(x)
becomes not negligible in comparison with the oscillatingρq(x) and the quantum density
ρq(x) has non-zero tails outside the classical interval, which increases the entropy.

The phenomenological functionS(x)[approx]
q also makes it possible to determine the

position entropy–energy relation ofQHO for higher quantum numbersn. The entropy–
energy relation is defined as the ratioq(n) of the entropy change to the energy change
between two neighbouring quantum states. Since in the case ofQHO there the same energy
h̄ω is always needed, we can write the asymptotical entropy–energy relation in the form

q(n) = kB
S(x)q (n+ 1)− S(x)q (n)

h̄ω
≈ kB

2h̄ω
ln

(
1 + 1

n+ 1/2

)
≈ kB

2h̄ωn
(32)

for n � 1, wherekB is Boltzmann’s constant. On the other hand, the maximum change of
entropy occurs when theQHO passes from the ground state to the first excited state. This
can be calculated exactly yielding

q(0) = kB
S(x)q (1)− S(x)q (0)

h̄ω
= kB

ln 2 + γ − 1

h̄ω
≈ kB

0.2703

h̄ω
. (33)
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Figure 2. Quantum and classical harmonic oscillator values of−ρ(ξ) ln ρ(ξ) for the quantum
numbern = 25.

3. Entropy of non-stationary states

Up to now we were dealing with entropy ofQHO Hamiltonian eigenstates. It is also
interesting to see how the entropy evolves in the case of non-stationary states of the
oscillator. The simplest class of such states are the coherent states. They can be defined as a
shifted vacuum, and therefore both the position and the momentum probability distributions
are simply shifted. Thus the entropies are the same as for the vacuum (i.e.n = 0 state):

S(x)(t) = S(p)(t) = 1
2(1 + lnπ) . (34)

(We assume ¯h = m = ω = 1 for simplicity.) The situation is more interesting for other
simple states—squeezed vacuum and the so-called Schrödinger cat states.

3.1. Squeezed vacuum

Let us assume that fort = 0 the wavefunction of the oscillator is

ψ(x, 0) = (s2π)−1/4 exp

(
− x2

2s2

)
(35)

wheres ∈ (0,∞) is the squeezing parameter. As we can see, fors = 1 we obtain a vacuum
state, while fors > 1 the corresponding Gaussian curve is ‘stretched’ and fors < 1 the
curve is ‘squeezed’. We can expect that the position entropy fors > 1 (t = 0) will be
larger and fors < 1 less, respectively, than in the case of a vacuum state. We remark that
from the viewpoint of the ‘usual’UR equation (34) still describes the minimum uncertainty
state.

We are now interested in the time evolution of wavefunction (35). This wavefunction
can be found in arbitrary time using the Green function of theLHO:

ψ(x, t) =
∫
G(x, x ′, t)ψ(x ′, 0) dx ′ (36)

where [13, 14]

G(x, x ′, t) = eiπ/4 eit/2

√
2π sint

exp

(
i
x2 cost − 2xx ′ + x ′2 cost

2 sint

)
. (37)
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Calculating the integral (36) we get

ψ(x, t) = ei(t/2+π/4)
4
√
π

√
(1/s) sint − is cost

exp

(
−i

(s2 − 1/s2) sin 2t

4
(
(1/s2) sin2 t + s2 cos2 t

)x2

)
× exp

(
− x2

2
(
1/s2) sin2 t + s2 cos2 t

))
. (38)

The probability distribution is then

ρ(x, t) = 1√
πσx(t)

exp

(
− x2

σ 2
x (t)

)
(39)

where

σx(t) =
√
(1/s2) sin2 t + s2 cos2 t . (40)

Now we can easily calculate the position entropy as a function of time

S(x)(t) = 1
2(1 + lnπ)+ ln[σx(t)]

= 1
2

[
1 + lnπ + ln

(
(1/s2) sin2 t + s2 cos2 t

)]
. (41)

As we can see, fors < 1 the position entropy oscillates between its minimum value

S
(x)

min = 1
2(1 + lnπ)+ ln s (42)

for t = 0, π, 2π . . . and its maximum value

S(x)max = 1
2(1 + lnπ)− ln s (43)

for t = π/2, 3π/2 . . . . Keeping in mind that for theQHO ρ(p, t) = ρ(x, t + π/2), the
momentum entropyS(p)(t) can be expressed as

S(p)(t) = 1
2(1 + lnπ)+ ln[σx(t + π/2)]

= 1
2

[
1 + lnπ + ln

(
s2 sin2 t + (1/s2) cos2 t

)]
. (44)

The sum of both entropies is then

S(x)(t)+ S(p)(t) = 1 + lnπ + 1

2
ln

(
3 + a

4
− a − 1

4
cos(4t)

)
(45)

wherea ≡ (s4 + 1/s4)/2. This function is periodic with a periodπ/2; its minimum value
is

Smin = 1 + lnπ (46)

i.e. equal to the vacuum state value. Its maximum value is

Smax = 1 + lnπ + 1
2 ln

(
a + 1

2

)
. (47)

Thus, even though each of the partial entropiesS(x) andS(p) can take arbitrary low values
(choosing appropriates), their sum never drops below the vacuum state value, i.e. the Bia 
lynicki-Birula–Mycielski limit (5). The time evolution of the entropies for the squeezed
vacuum is shown in figure 3.
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Figure 3. Time evolution of the position entropy (broken curve), momentum entropy (chain
curve) and their sum (full curve) for the squeezed vacuum. Parameters is (a) s = 1.5 and
(b) s = 5.

3.2. Schr¨odinger cat states

Schr̈odinger cat states are quantum superpositions of macroscopically distinguishable
‘classical’ states. In quantum optics these states are usually considered as superpositions of
two coherent states with the same amplitude but with opposite phases (see e.g. [15]), i.e.

|ψ〉 = A
(|α〉 + e−iϕ| − α〉) . (48)

Here |±α〉 are the coherent states which can be written in the coordinate representation in
the form

〈x| ± α(t)〉 = π−1/4 exp

(
− (x ∓ x0)

2

2
± ip0x

)
(49)

where±x0 and ±p0 are the mean positions and momenta of the coherent states evolving
in time according to the equations

x0 = a cost p0 = −a sint . (50)

The normalization constant is given by the equation

|A|2 = 1

2(1 + exp(−a2) cosϕ)
(51)



2196 V Majernı́k and T Opatrn´y

Figure 4. Time evolution of the position entropy for the Schrödinger-cat state (48) withϕ = 0
(an even state). The parametera is a = 1 (broken curve),a = 3 (chain curve) anda = 5 (full
curve).

whereϕ is the relative phase of the superposition. Forϕ = 0 the superposition is called an
even state (in Fock representation it contains only even numbers of photons) and similarly
for ϕ = π the state is called an odd state. The probability density is of the form

ρ(x, t) = 2|A|2√
π

(
e−(x2+x2

0)(cosh(2x0x)+ cos(2p0x + ϕ)
)
. (52)

The entropy of such states cannot be calculated exactly, but we can make a reasonable
estimate for the case whena is sufficiently high. For timet around zero, when the
probability distribution essentially consists of two separated Gaussian peaks the entropy
is approximated by the term ln 2, larger than for the coherent state value (34), i.e.

S(x)max ≈ 1
2(1 + lnπ)+ ln 2 ≈ 1.766. (53)

We see that we need information ln 2 (in nats, that corresponds to one bit), for determining
in which peak the particle occurs. On the other hand, ift approachesπ/2, the peaks
overlap and create an interference pattern. Fort = π/2 the probability distribution is a
Gaussian modulated highly oscillating squared sinus function. For its entropy we can use
the estimate (30), which yields the minimum value

S
(x)

min ≈ 1
2(1 + lnπ)+ ln 2 − 1 ≈ 0.766. (54)

We see that these extremal values differ from each other by the value 1. Numerical
calculations were performed for several values ofa (see figure 4), and except at very
low values ofa (when the Gaussians always overlap), the agreement with our previous
estimate was very good.

Similarly the momentum entropy can also be calculated, simply by shifting the time
argument byπ/2. From the numerical calculations as well as from the estimates it follows
that the sum of position and momentum entropies never drops below the vacuum state value.
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